Pointers are also used to hold the addresses of entry points for called subroutines in procedural programming and for run-time linking to dynamic link libraries (DLLs). In object-oriented programming, pointers to functions are used for binding methods, often using what are called virtual method tables. While "pointer" has been used to refer to references in general, it more properly applies to data structures whose interface explicitly allows the pointer to be manipulated (arithmetically via pointer arithmetic) as a memory address, as opposed to a magic cookie or capability where this is not possible. Because pointers allow both protected and unprotected access to memory addresses, there are risks associated with using them particularly in the latter case. Primitive pointers are often stored in a format similar to an integer; however, attempting to dereference or "look up" a pointer whose value was never a valid memory address would cause a program to crash. To alleviate this potential problem, as a matter of type safety, pointers are considered a separate type parameterized by the type of data they point to, even if the underlying representation is an integer. Other measures may also be taken (such as validation & bounds checking, to verify the contents of the pointer variable contain a value that is both a valid memory address and within the numerical range that the processor is capable of addressing).
History.
Harold Lawson is credited with the 1964 invention of the pointer. In 2000, Lawson was presented the Computer Pioneer Award by the IEEE “[f]or inventing the pointer variable and introducing this concept into PL/I, thus providing for the first time, the capability to flexibly treat linked lists in a general-purpose high level language”.
Formal Description.
In computer science, a pointer is a kind of reference.
A data primitive (or just primitive) is any datum that can be read from or written to computer memory using one memory access (for instance, both a byte and a word are primitives).
A data aggregate (or just aggregate) is a group of primitives that are logically contiguous in memory and that are viewed collectively as one datum (for instance, an aggregate could be 3 logically contiguous bytes, the values of which represent the 3 coordinates of a point in space). When an aggregate is entirely composed of the same type of primitive, the aggregate may be called an array; in a sense, a multi-byte word primitive is an array of bytes, and some programs use words in this way.
In the context of these definitions, a byte is the smallest primitive; each memory address specifies a different byte. The memory address of the initial byte of a datum is considered the memory address (or base memory address) of the entire datum. A memory pointer (or just pointer) is a primitive, the value of which is intended to be used as a memory address; it is said that a pointer points to a memory address. It is also said that a pointer points to a datum [in memory] when the pointer's value is the datum's memory address.
More generally, a pointer is a kind of reference, and it is said that a pointer references a datum stored somewhere in memory; to obtain that datum is to dereference the pointer. The feature that separates pointers from other kinds of reference is that a pointer's value is meant to be interpreted as a memory address, which is a rather low-level concept.
References serve as a level of indirection: A pointer's value determines which memory address (that is, which datum) is to be used in a calculation. Because indirection is a fundamental aspect of algorithms, pointers are often expressed as a fundamental data type in programming languages; in statically (or strongly) typed programming languages, the type of a pointer determines the type of the datum to which the pointer points.
Use In Data Structures.
When setting up data structures like lists, queues and trees, it is necessary to have pointers to help manage how the structure is implemented and controlled. Typical examples of pointers are start pointers, end pointers, and stack pointers. These pointers can either be absolute (the actual physical address or a virtual address in virtual memory) or relative (an offset from an absolute start address ("base") that typically uses fewer bits than a full address, but will usually require one additional arithmetic operation to resolve).
Relative addresses are a form of manual memory segmentation, and share many of its advantages and disadvantages. A two-byte offset, containing a 16-bit, unsigned integer, can be used to provide relative addressing for up to 64 kilobytes of a data structure. This can easily be extended to 128K, 256K or 512K if the address pointed to is forced to be aligned – on a half-word, word or double-word boundary (but, requiring an additional "shift left" bitwise operation—by 1, 2 or 3 bits—in order to adjust the offset by a factor of 2, 4 or 8, before its addition to the base address). Generally, though, such schemes are a lot of trouble, and for convenience to the programmer absolute addresses (and underlying that, a flat address space) is preferred. A one byte offset, such as the hexadecimal ASCII value of a character (e.g. X'29') can be used to point to an alternative integer value (or index) in an array (e.g. X'01'). In this way, characters can be very efficiently translated from 'raw data' to a usable sequential index and then to an absolute address without a look-up table.
Use In Control Tables.
Control tables, that are used to control program flow, usually make extensive use of pointers. The pointers, usually embedded in a table entry, may, for instance, be used to hold the entry points to subroutines to be executed, based on certain conditions defined in the same table entry. The pointers can however be simply indexes to other separate, but associated, tables comprising an array of the actual addresses or the addresses themselves (depending upon the programming language constructs available). They can also be used to point (back) to earlier table entries (as in loop processing) or forward to skip some table entries (as in a switch or "early" exit from a loop). For this latter purpose, the "pointer" may simply be the table entry number itself and can be transformed into an actual address by simple arithmetic.
Architectural Roots.
Pointers are a very thin abstraction on top of the addressing capabilities provided by most modern architectures. In the simplest scheme, an address, or a numeric index, is assigned to each unit of memory in the system, where the unit is typically either a byte or a word – depending on whether the architecture is byte-addressable or word-addressable – effectively transforming all of memory into a very large array. Then, if we have an address, the system provides an operation to retrieve the value stored in the memory unit at that address (usually utilizing the machine's general purpose registers). In the usual case, a pointer is large enough to hold more addresses than there are units of memory in the system. This introduces the possibility that a program may attempt to access an address which corresponds to no unit of memory, either because not enough memory is installed (i.e. beyond the range of available memory) or the architecture does not support such addresses. The first case may, in certain platforms such as the Intel x86 architecture, be called a segmentation fault (segfault). The second case is possible in the current implementation of AMD64, where pointers are 64 bit long and addresses only extend to 48 bits. There, pointers must conform to certain rules (canonical addresses), so if a non canonical pointer is dereferenced, the processor raises a general protection fault. On the other hand, some systems have more units of memory than there are addresses. In this case, a more complex scheme such as memory segmentation or paging is employed to use different parts of the memory at different times. The last incarnations of the x86 architecture support up to 36 bits of physical memory addresses, which were mapped to the 32-bit linear address space through the PAE paging mechanism. Thus, only 1/16 of the possible total memory may be accessed at a time. Another example in the same computer family was the 16-bit protected mode of the 80286 processor, which, though supporting only 16 MiB of physical memory, could access up to 1 GiB of virtual memory, but the combination of 16-bit address and segment registers made accessing more than 64 KiB in one data structure cumbersome. Some restrictions of ANSI pointer arithmetic may have been due to the segmented memory models of this processor family. In order to provide a consistent interface, some architectures provide memory-mapped I/O, which allows some addresses to refer to units of memory while others refer to device registers of other devices in the computer. There are analogous concepts such as file offsets, array indices, and remote object references that serve some of the same purposes as addresses for other types of objects.